Tropical rainforests are complex and varied environments found around the globe in tropical and subtropical regions. They hold a large biodiversity but also present multiple challenges, both for their human occupations and archaeological studies. In recent decades, we have learned that our ancestors lived in these environments much earlier than we thought and continuously over tens of thousands of years. Using stable isotope analyses, we hope to better understand how hunter-gatherers lived there in the past and if they perhaps gradually started using them differently before the introduction of agriculture.
Tropical rainforests are complex and varied environments found around the globe in tropical and subtropical regions. They hold a large biodiversity but also present multiple challenges, both for their human occupations and archaeological studies. In recent decades, we have learned that our ancestors lived in these environments much earlier than we thought and continuously over tens of thousands of years. Using stable isotope analyses, we hope to better understand how hunter-gatherers lived there in the past and if they perhaps gradually started using them differently before the introduction of agriculture.
Urbanization, forestry, and agriculture are readily associated with contemporary human land use, but how we use the land around us has changed greatly through our species' long history. The availability of food, seasonality, or the concentration of a particularly abundant rich food source are all examples of concerns that prehistoric populations would have faced, all of which would have been managed through land use strategies.
Directly and systematically assessing how past populations utilized their ecosystems, especially as far back as the Pleistocene, remains particularly challenging because pre-urban hunter-gatherer societies may not have left us with large-scale or significant traces. However, such studies are important to identify and assess drivers of long-term land changes and dynamics and to provide baselines for subsequent changes.
Dr. Nicolas Bourgon is carrying out zinc isotope analyses using a multi-collector mass spectrometer with inductively coupled plasma (MC-ICP-MS). The isotope analysis is carried out on fossil tooth enamel samples dissolved in acid from which the element zinc was previously separated using ion chromatography. The results obtained can help us distinguish between diets that rely more heavily on plants or meat, for example.
Dr. Nicolas Bourgon is carrying out zinc isotope analyses using a multi-collector mass spectrometer with inductively coupled plasma (MC-ICP-MS). The isotope analysis is carried out on fossil tooth enamel samples dissolved in acid from which the element zinc was previously separated using ion chromatography. The results obtained can help us distinguish between diets that rely more heavily on plants or meat, for example.
Using a systematic comparison of multi-isotopic data of δ66Zn, δ13C, and δ18O, we seek to quantify hunter-gatherers' dietary reliance on different resource types (e.g., plant, animal, and aquatic). Although the choice of food consumed may not have left visible traces in the landscape or the archeological records, these geochemical tracers can help us explore whether gradual dietary transitions were already underway even before the introduction of agriculture or animal husbandry.
This project is co-funded by an ongoing Walter Benjamin funding program of the Deutsche Forschungsgemeinschaft, with the project specifically looking into omnivory and how zinc isotopes can help us detect this dietary behaviour. This project is also being conducted in collaboration with the Bundesanstalt für Materialforschung und -prüfung (Berlin, Germany), the University of Sri Jayewardenepura (Gangodawila, Nugegoda, Sri Lanka), and the Australian National University (Canberra, Australia).
This project explores changing epistemes among surveyors during Old Babylonian period, or the early second millennium BCE in Mesopotamia (ancient Iraq). It asks, “How and to what extend did knowledge change in this community?” “Who affected this change?” and “What impact did this change have on the surveyor’s themselves and on other communities?”
Application of zooarchaeology by mass spectrometry (ZooMS) analysis in North America remains limited and is hindered by a lack of complete reference peptide markers for a number of Late Pleistocene megafaunal taxa. To address this gap, we aim to characterize collagen peptide markers for a significantly expanded number of extant and extinct mammals to amplify the potential of ZooMS in North American contexts.
This project explores historical discourses on petroleum extraction in Galicia, highlighting contrasting perspectives: one of technological advancement and another of moral and economic concerns. It investigates how these debates reflect broader global trends in environmental determinism and nation-building, shaping contemporary mindsets. Utilizing…
The investigation of infant feeding practices is critical for understanding trends in infant mortality, long-term health and population demographics, the socioeconomic roles of women, and family dynamics and subsistence. Stable carbon and nitrogen isotope analysis of bulk bone and dentine collagen revolutionized the way infant feeding practices are studied in the archaeological record.
The starting point for the project, conducted in collaboration with the Goethe-Institut, is existing initiatives in Indigenous and traditional territories in South America and Europe, that work to regenerate relationships between many species, human and non-human, based on the ways of life of ForestPeoples.